On Principal Bundles over a Projective Variety Defined over a Finite Field

نویسنده

  • INDRANIL BISWAS
چکیده

Let M be a geometrically irreducible smooth projective variety, defined over a finite field k, such that M admits a k–rational point x0. Let ̟(M,x0) denote the corresponding fundamental group–scheme introduced by Nori. Let EG be a principal G–bundle over M , where G is a reduced reductive linear algebraic group defined over the field k. Fix a polarization ξ on M . We prove that the following three statements are equivalent: (1) The principal G–bundle EG over M is given by a homomorphism̟(M,x0) −→ G. (2) There are integers b > a ≥ 1, such that the principal G–bundle (F b M )∗EG is isomorphic to (F a M )∗EG, where FM is the absolute Frobenius morphism of M . (3) The principal G–bundle EG is strongly semistable, degree(c2(ad(EG))c1(ξ) ) = 0, where d = dimM , and degree(c1(EG(χ))c1(ξ) ) = 0 for every character χ of G, where EG(χ) is the line bundle over M associated to EG for χ. In [16], the equivalence between the first statement and the third statement was proved under the extra assumption that dimM = 1 and G is semisimple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Bundles on Projective Varieties and the Donaldson-uhlenbeck Compactification

Let H be a semisimple algebraic group. We prove the semistable reduction theorem for μ–semistable principal H–bundles over a smooth projective variety X defined over the field C. When X is a smooth projective surface and H is simple, we construct the algebro– geometric Donaldson–Uhlenbeck compactification of the moduli space of μ–semistable principal H–bundles with fixed characteristic classes ...

متن کامل

Strongly Semistable Bundles on a Curve over a finite field

We show that a principal G bundle on a smooth projective curve over a finite field is strongly semistable if and only if it is defined by a representation of the fundamental group scheme of the curve into G. MSC 2000 classification:14-XX

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Grothendieck Groups of Bundles on Varieties over Finite Fields

Let X be an irreducible, projective variety over a finite field, and let A be a sheaf of rings on X. In this paper, we study Grothendieck groups of categories of vector bundles over certain types of ringed spaces (X,A). Mathematics Subject Classifications (2000): 11-XX, 19-XX, 14-XX, 13-XX.

متن کامل

Generalization of a criterion for semistable vector bundles

It is known that a vector bundle E on a smooth projective curve Y defined over an algebraically closed field is semistable if and only if there is a vector bundle F on Y such that both H(X, E ⊗ F ) and H(X, E ⊗ F ) vanishes. We extend this criterion for semistability to vector bundles on curves defined over perfect fields. Let X be a geometrically irreducible smooth projective curve defined ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009